

NSTX Lithium Plans and Requested R&D Support

H.W.Kugel

Plasma Facing Components Meeting November 17-20, 2003 Oakbrook, IL

Plasma Facing Components Meeting, Nov. 17-20, 2003, Oakbrook, IL

H. W. Kugel

Columbia U Comp-X **General Atomics INEL Johns Hopkins U** LANL LLNL Lodestar **Nova Photonics** NYU **ORNL PPPL PSI** SNL **UC Davis UC Irvine UCLA UCSD U** Maryland **U New Mexico U** Rochester **U Washington U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo **JAERI** Ioffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec

Outline

- NSTX Lithium Plan FY04- FY08
- The Path to NSTX Lithium Operations
- Requested near term technology support
- Requested near term support for the design & procedure review process.
- Summary and conclusions

NSTX Lithium Experiments Will Focus on Particle Control (FY'04) & Power Handling (FY'08)

· Particle Control Plan

TFTR demonstrated the benefit of a partial lithium coating on carbon PFCs

- Strong edge pumping (reduction of recycling)
- Improvement in energy confinement (x2)
- Lithium Pellet Injection (FY'04)
 - Use large capacity and multiple pellet capability
- Lithium Evaporator (FY'05)
 - CDX-U will test prototype modular evaporators
 - Use several evaporators to cover NSTX divertor regions
 - Benefit from CDX-U/LTX research to optimize substrate
 - possible change from carbon PFCs in FY'07

Particle Control and Power Handling Plan

- Liquid Lithium Surface Module (FY'08)
 - Potential for both power and particle handling

NSTX Experimental Plans in FY04 for Low-Z Pellet Injection

1) Characterize Low-Z Pellet Injection in NSTX

- Inject C,B, Li pellets (20-400 m/s)
- Probe NSTX edge transport barriers, flows, and rotation
- Measure
 - Pellet ablation along radial trajectory
 - Impurity transport from midplane to core & divertor

2) Particle Control Using Lithium Wall Coatings via Pellet Injection

- Use results from the pellet characterization experiments to select the optimum discharge conditions and pellet deposition region
- Injection early in discharge of interest
- Injection near termination of preceding discharge
- Measure: recycling, fueling efficiency, confinement, profiles,transport, neutron and power yields

Module A Test Limiter in CDX-U

- Single toroidal location
- Limiter will utilize 11 rectangular tiles
 - Curved on P-F side
 - Approx. 10 x 15 cm ea.
 - 1,650 cm² total area
 - Comparable to tray area
 - 60° coverage of C-S
 - Heated
- Two e-beam sources.
 - Try electrostatic focussing; allow magnetic guide field (using PF coils).
 - One up, one down.
 - Fixed, above/below plasma LCFS.
 - Two lithium sources.
 - One upward facing, one downward facing.
 - Russians interested in supplying sources (CPS)
 - Sources will be fixed during operation

CPS lithium sputtering source

5

NSTX Lithium Divertor Coatings

- Goal: Control divertor recycling using between-shots application of lithium coatings to the outer divertor tiles
 - Is lithium-on-graphite acceptable? Or is metallic lithium on an impenetrable substrate needed?
- Install an insertable e-beam (or resistively heated) deposition system (upper port as shown)
- Deposit few 1000Å of lithium. Withdraw deposition system.
 - Reminiscent of the insertable getters used in PLT, PBX
 - But time scale is different.
 - Few 10's of seconds for 1000Å coating
 - Cycle time is dominated by insertion/removal of deposition source.
- Coat before *every shot*
 - 1000 shots □ 0.1 mm accumulation
 - Accumulation may be limited by evaporation

Particle Pumping by Lithium Coatings

- Estimated Capacity for Film on Vessel Walls:
 - -Area of passive plates is ~1.5 x 10⁵ cm².
 - -Volume of 1000Å coating: 1.5 cm³ (~ 6 x 10²² atoms)
 - ~ 6 x 10²⁰ particles in an NSTX discharge
 - -Wall has the capacity to pump the discharge for many particle confinement times
- Estimated Capacity for Film on Entire Divertor:
 - -Area ~ 3.6 x 10⁴ cm²
 - -1.5 x 10²² atoms
 - Less capacity if only active area is considered
 »May require strike-pt sweeping to pump the divertor.

Liquid Lithium Surface Module Will Address Important Reactor Issues

- Development by Virtual Laboratory for Technology
- A potential solution for both power and particle handling
 -tantalizing possibilities for advanced regimes
 - -Liquid Li tray in CDX-U dramatically reduced recycling

- Modules ~ 1 m² close to plasma
- Flow liquid Li at ~7-12 m/s to avoid evaporation at full power
- The design will be based on edge and MHD modeling of data from CDX-U, NSTX, and the new Lithium Tokamak Experiment (LTX).
- Installation in FY'08

8

The Path to NSTX Lithium Operations

- The NSTX Lithium Plan has been adopted to facilitate NTSX performance and mission
 - NSTX is not a technology development project
 - Near term R&D support is requested to develop lithium evaporator technology for operation in FY05 and possible installation on NSTX and testing in FY04
 - Each step of the NSTX Lithium Plan is required to pass a rigorous design, procedure, & safety review process
 - R&D support is requested for this review process

1) Requested Near Term R&D Support for NSTX Lithium Operation

- RE Lithium Evaporation Technology
- Provide CDX-U as a test bed for NSTX Lithium development and issues
- Assist with the development of an evaporative coating system for CDX and NSTX tests
- Investigate composition of impurity layers on lithium formed in CDX and NSTX
- Model thermal response of lithium coating and substrates for NSTX conditions
- Model effects of sweeping divertor leg

2) Requested Near Term R&D Support for NSTX Lithium Operation

· RE NSTX Design, Procedure, & Safety Review process

- Determine compatibility of evaporated lithium coatings with
 - PFC substrate materials (ATJ graphite)
 - Vacuum materials
 - alumina, BN, Macor, Vespel, Mylar, ceramic cement
 - fiberglass cable insulation
 - 304-SS, Cu, Mo, W
 - present boronization coatings on vessel surfaces (BC₃)
 - viewports (glass, xtal quartz, fused silica, BK7, Be, sapphire, ZnSe)
 - special coatings (carbon paint optical dumps (lampblack))

Processes

- Boronization using Deuterated Trimethylboron [B(CD₃)₃] in HeGDC
- HeGDC between discharges
- 350 C° bakeout of PFCs, 150C° bakeout of vessel wall
- During bakeout D₂GDC followed by HeGDC

Summary and Conclusions

- The NSTX lithium plan has been adopted to facilitate NTSX performance and mission.
- Lithium Pellet Injection experiments will characterize lithium coatings and pellet behavior in ST's (FY'04).
- Higher yield film deposition techniques will use a between-shot lithium evaporator to coat the passive plate and divertor tiles(FY'05).
- A Liquid Lithium Surface Module (LLSM) will address active pumping and assist with power handling (FY'08). The design will be based on edge and MHD modeling data from CDX-U, NSTX, and LTX.
- NSTX needs near term support to facilitate the development and deployment of the required technology, and assistance with the Design and Procedure Review process.

